MDL Regularizer: A New Regularizer based on the MDL Principle
نویسندگان
چکیده
This paper proposes a new regularization method based on the MDL (Minimum Description Length) principle. An adequate precision weight vector is trained by approximately truncating the maximum likelihood weight vector. The main advantage of the proposed regularizer over existing ones is that it automatically determines a regularization factor without assuming any specific prior distribution with respect to the weight values. Our experiments using a regression problem showed that the MDL regularizer significantly improves the generalization error of a secondorder learning algorithm and shows a comparable generalization performance to the best tuned weight-decay regularizer.
منابع مشابه
Image Restoration by Variable Splitting based on Total Variant Regularizer
The aim of image restoration is to obtain a higher quality desired image from a degraded image. In this strategy, an image inpainting method fills the degraded or lost area of the image by appropriate information. This is performed in such a way so that the obtained image is undistinguishable for a casual person who is unfamiliar with the original image. In this paper, different images are degr...
متن کاملCollaboration space division in collaborative product development based on a genetic algorithm
The advance in the global environment, rapidly changing markets, and information technology has created a new stage for design. In such an environment, one strategy for success is the Collaborative Product Development (CPD). Organizing people effectively is the goal of Collaborative Product Development, and it solves the problem with certain foreseeability. The development group activities are ...
متن کاملPaper Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: Basic Properties
SUMMARY This paper addresses the problem of learning Bayesian belief networks (BBN) based on the minimum description length (MDL) principle. First, we give a formula of description length based on which the MDL-based procedure learns a BBN. Secondly, we point out that the diierence between the MDL-based and Cooper and Herskovits procedures is essentially in the priors rather than in the approac...
متن کاملProper versus Ad-Hoc MDL Principle for Polynomial Regression
The paper deals with the task of polynomial regression, i.e., inducing polynomial that can be used to predict a chosen dependent variable based on the values of independent ones. As in other induction tasks, there is a trade-off between the complexity of the induced polynomial and its predictive error. One of the approaches for searching an optimal trade-off is the Minimal Description Length pr...
متن کاملComplexity Approximation Principle
We propose a new inductive principle, which we call the complexity approximation principle (CAP). This principle is a natural generalization of Rissanen’s minimum description length (MDL) principle and Wallace’s minimum message length (MML) principle and is based on the notion of predictive complexity, a recent generalization of Kolmogorov complexity. Like the MDL principle, CAP can be regarded...
متن کامل